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Abstract

Koyna intraplate seismic region (KSR) in the Deccan Volcanic Province of western India has
experienced a large number of reservoir triggered earthquakes including 17 events of
magnitude > 5 over a period of four decades. Continuation of intraplate seismicity over such
a long duration offers an extensive data set of earthquake parameters to study the spatio-
temporal variations in the seismicity of the region. The focal mechanism solutions, although
limited in number and available mainly for moderate magnitude earthquakes, can be used to
quantify the prevailing stress state in the region. In the present study, we perform stress
inversion analysis to quantify the stress state of this region using published focal mechanisms
of earthquakes of magnitude 3.9-6.7, occurred during 1967-2005. The results suggest that
region has small cohesive strength of 9.6 MPa and the maximum shear stress varies from
19.2 MPa to 163 MPa with the average value of 67.2 MPa. The analysis also indicates the
presence of lateral compression and high pore fluid pressure in the region. The coupled effect
of high fluid pressure, compressive forces and low cohesive strength of the rocks could
possibly provide an explanation for the region being critically stressed and causing recurrent

seismic activity in KSR for over four decades.

Introduction

Koyna intraplate seismic region in the Deccan Volcanic Province (DVP) of western India
[Figure 1] is the unique intraplate region in the world where reservoir associated seismicity
has continued for over 40 years ever since the impoundment of the Sivajisagar reservoir in
1961 [Gupta 2002]. Warna reservoir was impounded in 1985 and is located to the south of
Koyna leading to an increase in intense seismic activity which is continuing till date.
Together Koyna-Warna region has experienced more than 1,00,000 earthquakes of small
magnitude which includes 17 earthquakes of magnitude >5 which have occurred during this
period [Gupta, 2002]. The largest earthquake of magnitude 6.3 occurred in this region on
1967.12.10 [Gupta et al., 1969], more than five years after the impoundment of the reservoir.
Detailed spatial analysis of vast amount of earthquake data revealed the presence of several
seismogenic crustal blocks in the region lying between Koyna and Warna rivers [Talwani,
1997]. Three broad seismicity trends, a NNE trend near the Koyna reservoir, another trend
20 km west of the reservoir and a NW trend cutting through these two, were identified based
on the above analysis of clustering of epicenters. More recent studies using a dense network

of digital seismometers and precise time control have further refined the seismicity trends and
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revealed three distinct trends, one NNE-SSW near Koyna reservoir, and the other two nearly
parallel NN'W-SSE trends near Warna reservoir [Rai et al., 1999]. Based on these results, the
whole region has been sub-divided into Koyna Seismic Zone (KSZ) and Warna Seismic Zone
(WSZ). However, in the present paper we consider these two zones together as Koyna

Seismic Region (KSR).

Continuation of moderate seismicity for such a long time and its link to the reservoir water
level changes suggests that the region is critically stressed due to tectonic causes [Rai et al.,
1999; Gahalaut et al., 2004] and water level changes provide necessary trigger for the
earthquakes [Gupta, 2002]. Various geophysical techniques have been used to map the
subsurface structure of KSR in order to provide better structural control for earthquake
studies. These include deep seismic sounding (DSS) studies along two E-W traverses [Kaila
et al., 1981], deep electrical sounding [Kailasam et al., 1976], seismic tomography [Rai et al.,
1999; Srinagesh et al., 2000], gravity studies [Krishna Brahmam and Negi, 1973], and MT
studies [Gokarn et al., 2003; Sarma et al., 2004]. DSS results bring out the presence of steep
dip faults cutting across the entire crust in this region [Kaila et al., 1981]. A further re-
analysis of these data identified low velocity layers (LVL) in the upper as well as lower crust
at depths of 611 km and 26-28 km [Krishna et al., 1997]. Talwani [1997] correlated the
earthquakes to the LVL at 6-11 km depth. In contrast, seismic tomography results inferred a
high seismic velocity block reaching to shallow depths from the lower crust in the region of
seismicity [Srinagesh et al., 2000]. Bouguer gravity anomaly over KSR was earlier
interpreted in terms the presence of a sub-trap rift-valley structure [Krishna Brahmam and
Negi, 1973]. However, recent MT results ruled out such a possibility and showed that the
KSR appears as a moderately conducting structure bounded on both the sides by high
resistive blocks [Sarma et al., 2004]. This conductive feature is never-the-less confined to the
upper 4-5 km of the crust even though the seismicity extends down to the depth of 15 km.

Thus, KSR also presents a range of contrasting results.

There are only very limited stress data available from the Indian shield region. These data
are mainly obtained by focal mechanism solutions of intraplate earthquakes. For KSR, the
direction of maximum compressive stress, obtained by focal mechanism data of moderate
magnitude Koyna earthquakes, is mainly N-S [Reinecker et al., 2005]. Since KSR has
experienced a large number of earthquakes over a period of four decades, it offers an

extensive data set to study the spatial-temporal variations in the stress levels for better
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understanding of the causative mechanism. However, focal mechanism data of only a limited
number of earthquakes are available. In the present study, we perform stress inversion
analysis to calculate the stress state of KSR using a small data set consisting of published

focal mechanisms of earthquakes of magnitude 3.9-6.7 occurred during 1967-2005.

Focal Mechanism Data

Despite the occurrence of a large number of small-to-moderate magnitude earthquakes in
KSR focal mechanism solutions for a small number of earthquakes are available. Talwani
[1997] presented a compilation of focal mechanisms of moderate magnitude earthquakes till
1997 along with detailed discussion on various focal mechanisms available for the largest
magnitude 1967.12.10 earthquake. Focal mechanisms for the earthquakes during 1997-2005
are from Harvard CMT catalog [http://www.seismology.harvard.edu] and are given in Table
1. Events 3-10 in Table 1 are composite fault plane solutions obtained by Gupta et al. [1980]
and for events 11-19 are from Talwani [1997]. The details of location, origin time, depth and
magnitude, if not available in respective publications, have been included from the NEIC
catalog [http://www.usgs.gov]. In some cases, both the nodal planes of the published focal
mechanisms were not consistent and therefore, revised focal mechanisms of Gahalaut
[personal communication] for these events have been used (shown in bold letters in Table 1).

Focal mechanisms of all the events used in the present analysis are shown in Figure 2.

Stress Inversion Analysis

We use the Cataclastic Analysis Method (CAM) of earthquake focal mechanisms [Rebetsky,
1999, 2003] which gives the directions of principal stresses as well as the maximum shear
stress and effective isotropic pressure (isotropic pressure in solid rocks minus pore fluid
pressure). The CAM is also applicable for the estimation of paleo-stresses from geological
structural data (slip on faults). This method involves four steps. In the first step, principal
axes of stress and seismotectonic strain tensors are calculated. During this stage groups of
uniform samples are created from initial structural kinematic data (SKD) such as focal

mechanism data [Rebetsky, 1999]. For the calculation of parameters of seismotectonic strain
tensor we have assumed that the increment of residual strain dg;. caused by each earthquake
(/=12,..,N;Nis the number of earthquakes in a set of uniform samples) is comprised of

deformations determined by the area of fault plane (Q') and the amplitude of average
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displacement (D) along it, averaged over the volume of elastic discharge area (V') of the
earthquake, i.e.
, _9'D!

dgij oy

[ 1 [ 1 ..
(nirj+njri); (l,j=1,2,3), (1)

where n; and 5 are direction cosines of the vectors normal to the fault plane and
displacement along the fault plane, respectively [Rebetsky, 1999]. For seismic data, we can
not choose n; and » from earthquake source mechanism and this selection is arbitrary. A

uniform sample of earthquake mechanisms thus selected represents a crustal domain subject
to quasi-homogeneous deformation under the predicted stress. For a set of uniform samples

the seismotectonic strain tensor can be determined as:
N
S, = Ydel . (2)
In the framework of CAM eq. (1) and (2) may be re-written as:

N
S;=0.5 7Z(nl,rl,+n l,rl,), where yleDl/Vl ~D'/I' = constant. 3)
i ijooJi

I=1

Here, the effective shear strain y characterizes the elastic strain drop of earthquakes and
for analyzing sub-region (domain of stress reconstruction for a set of N earthquakes) it is

assumed as constant (L= A+ B-10"?*"*"%»=km is the characteristic size of an earthquake

focal length; 4and Bare the coefficients governing the change in stress and M,is the

magnitude).

For the calculation of the principal axes of a stress tensor o, (o, = 0, = o, with tension as

+ve) CAM uses energy constraint of the plasticity theory. This constraint requires a decrease

in the internal elastic energy after each earthquake, i.e.

o,de;20 [1=12..,N. (4)
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This equation constrains the deviation of the angle between the vectors of shear stress and
displacement on a fault plane (this angle should be smaller then 90°). Under this constraint,

we can get an equation for the orientation of the principal stresses as:
mr >nhry > nyry for mir! =0 1=12,...,N. (5)

Details of this method are discussed in Rebetsky [1997, 1999, 2003]. Eq.(5) is used to
construct uniform samples of earthquake focal mechanisms. A uniform sample of earthquake
focal mechanisms thus selected represents a crustal domain subject to quasi-homogeneous
deformation under the predicted stress. This equation also allows calculation of variations in
the directions of principal stress axes. Parameters of stress ellipsoid are calculated on the
basis of these variations and using the principle of plasticity theory about maximum

dissipation of internal energy accumulated by elastic strain (o;S;; ). At the end of the first

stage, we get three Euler angles for the calculation of direction cosine of the principal stress

axes and the Lode-Nadai coefficient u_, (a coefficient representing the shape of the
deviatoric stress ellipsoid. x, =-1: uni-axial extension to x, =+1: uni-axial compression,

and . = 0: pure shear).

The second stage of CAM is based on the analysis of brittle behavior of rocks. Here, the

maximum stress state corresponds to the maximum value of cohesion 7, representing the

effective strength limit of rock [Figure 3]. This can be expressed as:

Tn+kf(0nn +pﬂ)=2'f for 7, >0 and o, <0, (6)

nn —

where o,, and 7, are normal and shear stress, respectively, for the internal friction
coefficient k , of rock and p, is the pore fluid pressure (compression of isotropic pressure is

+ve i.e. p,;20). For the fault plane of an earthquake / we can similarly express the stress

state as

! +k£(0',lm +pﬂ)= ! for 7/ >0 and o', <0, (7)

nn —
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where o and r,ll are normal and shear stress, respectively, on the fault plane of the

nn
earthquake / forming the uniform samples, rﬁ is the surface cohesion (0 < rﬁ <7,)and ké
is the static surface friction coefficient of preexisting fault. For simplicity, we assume that
ké =k . Thus, a line with zero cohesion represents the minimum bound on the stress for

brittle failure and the region between the two lines in the Mohr diagram [Figure 3] is the area

of brittle failure on preexisting faults.

After the first stage of stress analysis, we can calculate reduced stress (&, ,7, ) on fault

nn>

planes with arbitrary orientation on the basis of following expression:

G =(om + PV T == )l f =1+ )t F

Ty =6y =0 /7= (1= p)nlt] = (1+ ), (®)

where 7=(0,-03)/2, p=—(0y+0,+03)/3. Here n! and ¢/ (i =1, 2, 3) are direction cosines
of normal to arbitrary orientated fault plane and shear stress direction of this plane in the

coordinate system of predicted principal stress axes; p and 7 are unknown isotropic
pressure and maximum shear stress. Note from Eq.(5) the angle between vector ¢ and vector

r! (displacement vector on the fault plane) should be positive.

Eq.(7) can be used to select the fault plane from the double couple focal mechanism nodal
planes (n' and s') of an earthquake assuming that the focal plane is the one that allows the

largest stress release. In the framework CAM this condition is represented by

/ 1l ! [ 1
T, + ko, > T +kog . 9)

Reduced stresses for each uniform sample of earthquakes allow plotting of pairs of o,

and 7, in the Mohr diagram to construct big limiting Mohr circle and obtain minimum

friction resistance corresponding to ri =0 in the framework of CAM. Thus, the reduced

stress state at a point can be calculated by using eq.(8) and angle a5 can be estimated from

the Mohr diagram [Figure 3]. Using these values relative effective pressure and the maximum

shear stress can be calculated by the following expression:
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<peff>: , X +5k)
kS

Ty |_c0sec(2a3)—ks,u0/3—(?K+k EK)],

n s~ nn

T 1
B , 10
<Tf> cosec(ZaB)—ks,uG/S —(7,,1( + kSE,ﬁ) (10)

1 L
where 2a, =arctan(k—J and p, =p-py. Second step of the stress analysis gives stress

s

estimates normalized to an unknown internal cohesion 7 r of rocks.

In the third stage of CAM, the internal cohesion is determined by using independent
information of stress drop during a strong earthquake [Rebetsky and Marinin, 2006a,b]. After

the second stage of CAM the stress drop Az, normalized to 7, can be related to the fault

normal effective stress (a,m +p ﬂ) as:

—+
<A’">=1—(ks —kkK—“”" ”-”>, (n
Tf Tf

where right side of this equation can be calculated on the basis of the results of the first and

the second stage of stress analysis as

<0nn +pp > _ _<l;eff>+{(1—ua)(ln1)z ~wea ) | <§> (12

Ty !

Here, k, and k; are the static and kinematic friction coefficient (k; <k, ), respectively.
Eq.(11) gives the value of stress drop. In the present analysis, we assume that £, =0.5 and

k, =0.6.

Alternatively, the stress drop, Ar,, can be independently estimated form the seismic
moment and energy of seismic radiation. Thus, knowing the value of the stress drop Az,
from earthquake data it is possible to obtain the value of the cohesion 7, by using the

following expression:
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-1
> =Arn<AT”> . (13)

Once 7 I i1s known, we can estimate the absolute values of the maximum shear stress and

effective isotropic pressure from eq.(10).

In the forth step of CAM separation of isotropic pressure and fluid pressure can be carried
out by assuming the vertical stress to be equal to the weight of the column of rock [Sibson,

1974]

Oz z_pg(h+ht)’ (14)

where p and g are density and gravity acceleration and %, 4, are the depth of the point at

which the stress is calculated and topography, respectively. Using eq.(14) and reduced stress

we can write an equation for the calculation of pressure as:

T ~
p:pgh+<T—>O'ZZ Tf, (15)
r

where &, =(azz+p)/r=[(1—ya)(zl)2—(1+y0)(z3)2]. Here, z; (i = 1, 2, 3) are direction

cosines of the zenith vector in the coordinate system of principal stress axes.

Results

We performed stress inversion of the focal mechanisms given in Table 1 and shown in figure.
1. The focal depths are distributed over 4 — 15 km depths. There are three events with focal
depths in the range of 25 to 35 km but these depths are unlikely for this region. Since the
number of available focal mechanisms is very small to extract the sets of homogeneous

samples (stage 1 of the analysis), we have assigned a focal depth of 15 km to all these events.

The results of the first stage of stress reconstruction for this data set are shown in figure 4.

Here, horizontal projections of the directions of principal deviatoric stresses o, +p
(maximum extension) and o5 + p (maximum compression) are shown as blue and red lines,

respectively [Figure 4a]. Maximum deviatoric extension axis has ENE plunge for the



©CoO~NOUTA,WNPE

Geophysical Journal International

10

northern part of the region and west plunge for the southern part of the region. In the central
part, these axes are sub-horizontal and their strike have NE orientation. Maximum deviatoric
compression has sub-horizontal orientation for the northern part of the region and sub-vertical
for other parts of the region. Orientation of these axes allows separation of sub-regions based
on different stress regime [Figure 4b]: horizontal extension (blue), horizontal compression

(red), strike slip (yellow). The distribution of the Lode-Nadai coefficient () is shown in

figure 4c. This figure shows three distinct stress regimes: uni-axial extension (blue color),

uni-axial compression (red color), simple shear (yellow color). The variation in g suggests

that the KSZ region has mainly simple shear to uni-axial compression deformation whereas
WSZ has more complex deformation mechanism. The junction of the KSZ and WSZ shows

extensional deformation mechanism.

The results at the end of the second stage of stress reconstruction by CAM are shown in

figure 5. At this stage, we have calculated effective pressure p,, and maximum shear stress
7, both normalized to an unknown cohesion 7, by performing Mohr diagrams analysis for

each homogeneous sample of earthquakes. The results show the variations in the maximum
shear stress in the range of 2-17 with the mean values of 7.0 [Figure 5a]. The effective
pressure follows the pattern of the shear stress variations and has a positive correlation with it
[Figure 5b]. It varies in the range of 3-38. The regions of large shear stress coincide with the
regions of large effective pressure. Incidentally, the seismicity is correlated with the regions

of low effective pressure and shear stress.

In the third stage of stress analysis, we have calculated effective cohesion (z,) of rocks

using available estimates of the stress drop for earthquakes. Some estimates of the stress drop
from the seismic moment are available for KSZ. Talwani [1997] compiled various estimates

of the stress drop ( Az, ) of the main earthquake of 1967.12.10 (M=6.3). These estimates vary

in the range of 0.6 — 23.8 MPa. An estimate of 23.8 MPa was obtained from the displacement
spectra of strong ground motion seismograms. Mandal et al. [1998] estimated the stress drop
to be in the range of 0.03 to 19 MPa for the earthquakes in this region ranging in magnitude
between 1.5 and 4.7. In their study, the maximum stress drop of 19 MPa was obtained for a
4.7 magnitude earthquake. Ajay Kumar et al. [2006] also obtained a similar stress drop of 19
MPa for another earthquake of 5.1 magnitude and attributed this to the presence of competent

material within the source volume. Based on these studies, we have taken 20 MPa as an
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average value of the stress drop for this region. On the basis of the results of the first and the
second stage of stress reconstruction we have calculated normalized stress drop for both
nodal planes of the main earthquake (1967.12.10) by taking the stress data of the region near

the hypocenter. The obtained normalized stress drop <Az’n It /.> is 1.43 for the first nodal plane

(strike = 217.0, dip= 72.0, slip=4.0) whereas it is 2.09 for the second nodal plane (strike=
126.0, dip= 84.0, slip= 162.0).

Using the criterion given by eq.(9), we have selected the second nodal plane as the fault
plane for this earthquake and the value of 2.09 as the corresponding stress drop. Once the
value of the stress drop is fixed, we can calculate the value of the effective cohesion using
eq.(13) which comes out to be 9.6 MPa. It means that the maximum shear stress for this

region varies from 19.2 MPa to 163 MPa with the mean value of about 67.2 MPa.

Figure 6 shows the ratio of the tectonic pressure to the lithostatic pressure p/ p, and pore
fluid pressure to the lithostatic pressure p,/ p,, respectively. The value of p/p, varies

between 1.02 - 1.17 and has an average value of 1.08, indicating that the region is
experiencing an additional compression (possible lateral) over the lithostatic pressure [Figure
6a]. The magnitude of this additional average compression at a given depth can be estimated
from the lithostatic pressure at that depth. For example, assuming the density of rocks as
2700 kg/m’ the average compression at 15 km depth is about 32 MPa. Similarly, the ratio of
pore fluid pressure to the lithostatic pressure varies between 0.31-0.96 [Figure 6b] with a
large area having higher pore fluid pressure. The seismogenic volume and the region of high
fluid pressure are coincident, indicating that the fluid pressure is playing a significant role in

weakening the system of faults in KSR.

Conclusion

Stress inversion analysis of focal mechanism solutions in KSR for the earthquakes during
1967-2005 distinctly brings out that the cohesive strength of the rocks is 9.6 MPa and the
maximum shear stress varies between 19.2 to 163 MPa, with lower values coinciding with the
region of seismic activity. Further, the region of lower maximum shear stress is conspicuous
with high fluid pressure reaching almost to the lithostatic levels. The analysis also reveals the
presence of compressive forces acting additionally in this region. The coupled effect of high

fluid pressure, compressive forces and low cohesive strength of the rocks could possibly
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provide an explanation for the region being critically stressed and causing recurrent seismic

activity in KSR for over four decades.
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Table 1. Focal mechanism data used in the present analysis. For some events, re-estimated focal
mechanisms (marked in bold face) have been used. Where ever not available in respective
publications, latitudes/longitudes have been taken from NEIC catalog. Since time accuracy
up to seconds is not available for old events, we show time only up to minutes for all the
events.
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Figure 1. Map showing location of the Koyna (KSZ) and Warna (WSZ) Seismic Zones along with
distribution of seismicity superimposed on topography. Black stars show the epicenters of
the earthquakes used in the present analysis. Topography data are taken from GTOPQO30.

Figure 2. Focal mechanisms of earthquakes used in the present analysis.

Figure 3. Mohr diagram for stress state (extension +ve). Dark gray color area is the area of
possibility of brittle destruction at preexisting fault. Point B characterize a stress state for
internal strength of rock, points A and C characterize fault planes with maximum deviation
from the plane of internal strength of rock. Point K represents fault with minimum frictional
resistance.

Figure 4. (a) Horizontal projections of directions of maximum extensional principal stress o, (blue)

and minimum extensional principal stress o, (red), (b) stress state regime: 1— horizontal

extension; 2— combination of horizontal extension and horizontal strike slip; 3— horizontal
strike slip; 4— combination of horizontal compression and horizontal strike slip; 5—

horizontal compression, and (c) distribution of Lode-Nadai coefficient y_ . Stars are
epicenters of earthquakes used in the present analysis.

Figure 5. Distribution of (a) maximum shear stressz normalized to 7z, and (b) correlation between

maximum shear stress and effective pressure at the end of second stage of stress
inversion analysis. Stars are epicenters of earthquakes used in the present analysis.

Figure 6. Distribution of (a) tectonic pressure to the lithostatic pressure p/p,, and (b) pore fluid
pressure to the lithostatic pressure p,/p, . Stars are epicenters of earthquakes used in
the present analysis.
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